Месяц: Ноябрь 2013
DS1307 RTC – Real Time Clock
Долго искал, думал как сделать датчик столкновения.
X-Rover 4.1 + UltraSonic HC-SR04
NewPing Library for Arduino (Ultrasonic Sensors)
Пример:
// --------------------------------------------------------------------------- // This example code was used to successfully communicate with 15 ultrasonic sensors. You can adjust // the number of sensors in your project by changing SONAR_NUM and the number of NewPing objects in the // "sonar" array. You also need to change the pins for each sensor for the NewPing objects. Each sensor // is pinged at 33ms intervals. So, one cycle of all sensors takes 495ms (33 * 15 = 495ms). The results // are sent to the "oneSensorCycle" function which currently just displays the distance data. Your project // would normally process the sensor results in this function (for example, decide if a robot needs to // turn and call the turn function). Keep in mind this example is event-driven. Your complete sketch needs // to be written so there's no "delay" commands and the loop() cycles at faster than a 33ms rate. If other // processes take longer than 33ms, you'll need to increase PING_INTERVAL so it doesn't get behind. // --------------------------------------------------------------------------- #include "NewPing.h" #define SONAR_NUM 8 // Number or sensors. #define MAX_DISTANCE 200 // Maximum distance (in cm) to ping. #define PING_INTERVAL 33 // Milliseconds between sensor pings (29ms is about the min to avoid cross-sensor echo). unsigned long pingTimer[SONAR_NUM]; // Holds the times when the next ping should happen for each sensor. unsigned int cm[SONAR_NUM]; // Where the ping distances are stored. uint8_t currentSensor = 0; // Keeps track of which sensor is active. NewPing sonar[SONAR_NUM] = { // Sensor object array. Each sensor's trigger pin, echo pin, and max distance to ping. NewPing(50, 51, MAX_DISTANCE), // 1 NewPing(52, 53, MAX_DISTANCE), // 2 NewPing(38, 37, MAX_DISTANCE), // 3 NewPing(40, 39, MAX_DISTANCE), // 4 NewPing(33, 34, MAX_DISTANCE), // 5 NewPing(35, 36, MAX_DISTANCE), // 6 NewPing(24, 25, MAX_DISTANCE), // 7 NewPing(26, 27, MAX_DISTANCE), // 8 }; void setup() { Serial1.begin(115200); pingTimer[0] = millis() + 75; // First ping starts at 75ms, gives time for the Arduino to chill before starting. for (uint8_t i = 1; i < SONAR_NUM; i++) // Set the starting time for each sensor. pingTimer[i] = pingTimer[i - 1] + PING_INTERVAL; } void loop() { for (uint8_t i = 0; i < SONAR_NUM; i++) { // Loop through all the sensors. if (millis() >= pingTimer[i]) { // Is it this sensor's time to ping? pingTimer[i] += PING_INTERVAL * SONAR_NUM; // Set next time this sensor will be pinged. if (i == 0 && currentSensor == SONAR_NUM - 1) oneSensorCycle(); // Sensor ping cycle complete, do something with the results. sonar[currentSensor].timer_stop(); // Make sure previous timer is canceled before starting a new ping (insurance). currentSensor = i; // Sensor being accessed. cm[currentSensor] = 0; // Make distance zero in case there's no ping echo for this sensor. sonar[currentSensor].ping_timer(echoCheck); // Do the ping (processing continues, interrupt will call echoCheck to look for echo). } } // The rest of your code would go here. } void echoCheck() { // If ping received, set the sensor distance to array. if (sonar[currentSensor].check_timer()) cm[currentSensor] = sonar[currentSensor].ping_result / US_ROUNDTRIP_CM; } void oneSensorCycle() { // Sensor ping cycle complete, do something with the results. for (uint8_t i = 0; i < SONAR_NUM; i++) { Serial1.print(i); Serial1.print("="); Serial1.print(cm[i]); Serial1.print("cm "); } Serial1.println(); }